

Q - SHOW THE WORKING OF MINIMAX ALGORITHM USING TIC TAC TOE GAME..

Finding the Best Move :
We shall be introducing a new function called findBestMove(). This function
evaluates all the available moves using minimax() and then returns the best move
the maximizer can make. The pseudocode is as follows :

function findBestMove(board):
 bestMove = NULL
 for each move in board :
 if current move is better than bestMove
 bestMove = current move
 return bestMove

Minimax :
To check whether or not the current move is better than the best move we take the
help of minimax() function which will consider all the possible ways the game can
go and returns the best value for that move, assuming the opponent also plays
optimally
The code for the maximizer and minimizer in the minimax() function is similar
to findBestMove(), the only difference is, instead of returning a move, it will return
a value. Here is the pseudocode :
function minimax(board, depth, isMaximizingPlayer):

 if current board state is a terminal state :
 return value of the board

 if isMaximizingPlayer :
 bestVal = -INFINITY
 for each move in board :
 value = minimax(board, depth+1, false)
 bestVal = max(bestVal, value)
 return bestVal

NAME –
UID –
BRANCH – B.TECH CSE
SEM – 4TH
SEC- 615 “B”
SUBJECT – AI

 else :
 bestVal = +INFINITY
 for each move in board :
 value = minimax(board, depth+1, true)
 bestVal = min(bestVal, value)
 return bestVal

Checking for GameOver state :
To check whether the game is over and to make sure there are no moves left we
use isMovesLeft() function. It is a simple straightforward function which checks
whether a move is available or not and returns true or false respectively.
Pseudocode is as follows :

function isMovesLeft(board):
 for each cell in board:
 if current cell is empty:
 return true
 return false

Making our AI smarter :
One final step is to make our AI a little bit smarter. Even though the following AI
plays perfectly, it might choose to make a move which will result in a slower victory
or a faster loss. Lets take an example and explain it.
Assume that there are 2 possible ways for X to win the game from a give board
state.

• Move A : X can win in 2 move
• Move B : X can win in 4 moves

Our evaluation function will return a value of +10 for both moves A and B. Even
though the move A is better because it ensures a faster victory, our AI may
choose B sometimes. To overcome this problem we subtract the depth value from
the evaluated score. This means that in case of a victory it will choose a the victory
which takes least number of moves and in case of a loss it will try to prolong the
game and play as many moves as possible. So the new evaluated value will be

• Move A will have a value of +10 – 2 = 8
• Move B will have a value of +10 – 4 = 6

Now since move A has a higher score compared to move B our AI will choose
move A over move B. The same thing must be applied to the minimizer. Instead of
subtracting the depth we add the depth value as the minimizer always tries to get,
as negative a value as possible. We can subtract the depth either inside the

evaluation function or outside it. Anywhere is fine. I have chosen to do it outside the
function. Pseudocode implementation is as follows.

if maximizer has won:
 return WIN_SCORE – depth

else if minimizer has won:
 return LOOSE_SCORE + depth

CODE IN COMPILER

player, opponent = 'x', 'o'

def isMovesLeft(board) :

 for i in range(3) :
 for j in range(3) :
 if (board[i][j] == '_') :
 return True
 return False

def evaluate(b) :

 # Checking for Rows for X or O victory.
 for row in range(3) :
 if (b[row][0] == b[row][1] and b[row][1] == b[row][2]) :
 if (b[row][0] == player) :
 return 10
 else if (b[row][0] == opponent) :
 return -10

 # Checking for Columns for X or O victory.
 for col in range(3) :

 if (b[0][col] == b[1][col] and b[1][col] == b[2][col]) :

 if (b[0][col] == player) :
 return 10

 else if (b[0][col] == opponent) :
 return -10

 # Checking for Diagonals for X or O victory.
 if (b[0][0] == b[1][1] and b[1][1] == b[2][2]) :

 if (b[0][0] == player) :
 return 10
 else if (b[0][0] == opponent) :
 return -10

 if (b[0][2] == b[1][1] and b[1][1] == b[2][0]) :

 if (b[0][2] == player) :
 return 10
 else if (b[0][2] == opponent) :
 return -10

 # Else if none of them have won then return 0
 return 0

def minimax(board, depth, isMax) :
 score = evaluate(board)

 if (score == 10) :
 return score

 if (score == -10) :
 return score

 # If there are no more moves and no winner then
 # it is a tie
 if (isMovesLeft(board) == False) :
 return 0

 # If this maximizer's move
 if (isMax) :
 best = -1000

 # Traverse all cells
 for i in range(3) :
 for j in range(3) :

 # Check if cell is empty
 if (board[i][j]=='_') :

 # Make the move
 board[i][j] = player

 # Call minimax recursively and choose
 # the maximum value
 best = max(best, minimax(board,
 depth + 1,
 not isMax))

 # Undo the move
 board[i][j] = '_'
 return best

 # If this minimizer's move
 else :
 best = 1000

 # Traverse all cells
 for i in range(3) :
 for j in range(3) :

 # Check if cell is empty
 if (board[i][j] == '_') :

 # Make the move
 board[i][j] = opponent

 # Call minimax recursively and choose
 # the minimum value
 best = min(best, minimax(board, depth + 1, not isMax))

 # Undo the move
 board[i][j] = '_'
 return best

This will return the best possible move for the player
def findBestMove(board) :
 bestVal = -1000
 bestMove = (-1, -1)

 # Traverse all cells, evaluate minimax function for
 # all empty cells. And return the cell with optimal
 # value.
 for i in range(3) :
 for j in range(3) :

 # Check if cell is empty
 if (board[i][j] == '_') :

 # Make the move
 board[i][j] = player

 # compute evaluation function for this
 # move.
 moveVal = minimax(board, 0, False)

 # Undo the move
 board[i][j] = '_'

 if (moveVal > bestVal) :
 bestMove = (i, j)
 bestVal = moveVal

 print("The value of the best Move is :", bestVal)
 print()
 return bestMove
Driver code
board = [
 ['x', 'o', 'x'],
 ['o', 'o', 'x'],
 ['_', '_', '_']
]

bestMove = findBestMove(board)

print("The Optimal Move is :")

print("ROW:", bestMove[0], " COL:", bestMove[1])

OUTPUT –

EXPLAINATION

This image depicts all the possible paths that the game can take from the root board
state. It is often called the Game Tree.
The 3 possible scenarios in the above example are :

• Left Move : If X plays [2,0]. Then O will play [2,1] and win the game. The
value of this move is -10

• Middle Move : If X plays [2,1]. Then O will play [2,2] which draws the
game. The value of this move is 0

• Right Move : If X plays [2,2]. Then he will win the game. The value of this
move is +10;

Remember, even though X has a possibility of winning if he plays the middle
move, O will never let that happen and will choose to draw instead.
Therefore the best choice for X, is to play [2,2], which will guarantee a victory for
him.
We do encourage our readers to try giving various inputs and understanding why
the AI choose to play that move. Minimax may confuse programmers as it it thinks
several moves in advance and is very hard to debug at times. Remember this
implementation of minimax algorithm can be applied any 2 player board game with

some minor changes to the board structure and how we iterate through the moves.
Also sometimes it is impossible for minimax to compute every possible game state
for complex games like Chess. Hence we only compute upto a certain depth and
use the evaluation function to calculate the value of the board.
Stay tuned for next weeks article where we shall be discussing about Alpha-Beta
pruningthat can drastically improve the time taken by minimax to traverse a game
tree.

